Identifying and Assessing Subgroups in Systemic Sclerosis Patients based on Comprehensive Autoantibody Profiling

P. Buddel1, H.-D. Zuchtf1, H. Göhler1, M. Schneider1, P. Schult-Knappe1, N. Hunzelmann2
1Protagen AG, Dortmund, 2Rheumatology, Heinrich-Heine-University Düsseldorf, 3Department of Dermatology, University of Cologne, Germany

ACR2016 #613

Introduction

- Systemic sclerosis (SSc) is a remarkably heterogeneous autoimmune disease, for which effective disease-modifying therapies are still lacking.
- The most widely used classification divides SSc into the two major subsets diffuse cutaneous (dcSSc) and limited (lcSSc) SSc by the extent and severity of skin fibrosis. However, not all patients fit into these subsets.
- We explored whether autoantibodies (AAB) against a multitude of antigens could provide biomarkers to uncover unrecognized SSc subtypes and insights into the pathogenesis of SSc.
- Here, we describe the development of a 20 marker multiplexed AAB assay and explored its utility for SSc patient subgroup analysis.

Methods

Novel SSc-associated autoantigens were discovered by high-content autoantibody profiling using the bead-based Luminex xMAP platform SeroTag® (Fig. 1). Novel AAB targets with p-value <0.05 (Mann-Whitney-U-test) and frequency >15% were identified in SSc patients (dcSSc: n=32, lcSSc: n=50, and SSc overlap: n=9). The mean modified Rodnan skin score (MRSS), mean disease duration (month), and mean age (years) of the SSc cohort was 10.51, 162.5 and 56.94, respectively.

Results

NavigAID SSc Assay

A Luminex bead-based AAB assay was designed by combining 8 connective tissue disease (anti-centromere, anti-Scl70, U1-snRNP, SSB, Ro52, Ro60, Sm, anti-ribosomal P) antigens with 12 novel antigens including BICD2, JMJD3/KDM6B, and PPP1R2 (Fig 2).

To analyze the individual-level patient similarity of AAB reactivity, the total number of AABs reactive in each patient was calculated and referenced to the number of all available antigens in percent. Hierarchical cluster analysis of marker co-occurrence and patient signature overlap was performed (Fig. 3).

Autoantibody Reactivity Signatures

Based on their AAB reactivity pattern, the SSc sample cohort can be decomposed into four main clusters:

- Cluster blue (n=21): 90% of all samples were lcSSc, characterized by an extended AAB repertoire (including CENPB, BICD2, KDM6B and PPP1R2), MRSS below the average and longer disease duration.
- Cluster black (n=10): 70% were lcSSc, 20% dcSSc, and 10% SSc-ov, characterized by MRSS below the average, 40% of patients were PPP1R2 positive.
- Cluster grey (n=32): 53% were dcSSc, 28% dcSSc, and 19% SSc-ov. 34% of patients had MRSS below the average and few AABs.
- Cluster red (n=28): 71% were dcSSc, 35% lcSSc, and 4% SSc-ov. 86% of patients had the MRSS above the average and had all Scl70 AAB.

Conclusions

The multiplexed analysis of AABs in SSc enables defining an AAB reactivity score and SSc patient clusters. This might support the stratification of SSc patients into more homogeneous subgroups in clinical studies thereby increasing the probability of successful drug development.

Fig. 1: Discovery and validation of SSc-associated autoantibody marker

Fig. 2: NavigAID SSc stratification assay

Fig. 3: Autoantibody signature similarity and dissimilarity of SSc patients

Fig. 4: Interpretation of Cluster: Multi-Dimensional Scaling (MDS)

Fig 4 shows a Multi-Dimensional Scaling (MDS) plot of all patients. Patients are labelled according to their cluster membership in Fig. 3.